Porous Concrete As Road Infrastructure Using Coarse Aggregate Uniform Gradation

Authors

  • Andi Muhammad Rezky Putra Ardian Universitas Muhammadiyah Parepare
  • Adnan Adnan Universitas Muhammadiyah Parepare
  • Abd. Muis Baharuddin Universitas Muhammadiyah Parepare

DOI:

https://doi.org/10.61132/ijmecie.v1i3.36

Keywords:

Porous concrete, Slump test, Compressive strength, Permeability

Abstract

Porous concrete is commonly used in road linings with minimal traffic, parking areas, pedestrian paths, and parks. The strength of porous concrete depends on the size of the aggregate and the correct composition of water and cement. The objective of the study was to analyse the effect of cement water factor in uniformly graded porous concrete on compressive strength and permeability in uniformly graded porous concrete on permeability values. The relationship between the compressive strength of concrete tends to decrease as the value of cement water factor increases. The water-cement factor strongly influences the permeability value. The greater the value of cement water factor, the smaller the permeability of uniformly graded porous concrete, this is due to the deposition of cement water at the base of the slab. The use of super plasticizer (SP) in porous concrete accelerates the pavement process, but does not improve permeability. cement water factor 0.35 with a 28-day treatment period obtained a Slump test value of 178 mm, cement water factor 0.5 of 192 mm, cement water factor 0.6 with a 28-day treatment period obtained a Slump test value of 196 mm. while porous concrete with a cement water factor of 0.35 has an average compressive strength of 6.13 Mpa, while a cement water factor of 0.50 has an average compressive strength of 5.47 Mpa, and a cement water factor of 0.60 has an average compressive strength of 5.00 Mpa.

References

Abadjieva, T., & Sephiri, P. (2000). Investigations on some properties of no-fines concrete. University of Botswana, Botswana.

Abd Halim, N. H., Md Nor, H., Jaya, R. P., Mohamed, A., Wan Ibrahim, M. H., Ramli, N. I., & Nazri, F. M. (2018). Permeability and Strength of Porous Concrete Paving Blocks at Different Sizes Coarse Aggregate. Journal of Physics: Conference Series, 1049(1), 12028. https://doi.org/10.1088/1742-6596/1049/1/012028

Adnan, A., & Alim, M. (2024). Prilaku Kuat Tekan Beton Porous Menggunakan Air Laut. Venus: Jurnal Publikasi Rumpun Ilmu Teknik, 2(2), 118–127.

Ang, J., & Lihndal, E. (2012). Scholar Commons Porous Concrete Design. https://scholarcommons.scu.edu/ceng_senior/58

Antiohos, S., Maganari, K., & Tsimas, S. (2005). Evaluation of blends of high and low calcium fly ashes for use as supplementary cementing materials. Cement and Concrete Composites, 27(3), 349–356.

ASTM C31. (n.d.). Making and Curing Concrete Test Specimens in the Field, https://www.sicerts.com/aci/making-curing-concrete-test-specimens.

ASTM C33. (2008). Standard specification for concrete aggregates, ASTM C 33-86. Annual Book of ASTM Standards, 11, 11.

ASTM C33; 1500 - E117 - Concrete Technology and Codes - 05. (2017). Aggregate Specifications and Performance in Concrete (Vol. 01, pp. 1–7).

ASTM C430. (2017). Standard Test Method for Fineness of Hydraulic Cement by the 45-µm (No. 325) Sieve. Astm, 325, 1–3.

ASTM D 3576. (2018). Standard Test Methods for Saturated Hydraulic Conductivity, Water Retention, Porosity, Particle Density, and Bulk Density of Putting Green and Sports Turf Root Zones. Designation: E 778 – 87 (Reapproved 2004), i(Reapproved), 3–5.

ASTM E1856-13(2021). (n.d.). Standard Guide for Evaluating Computerized Data Acquisition Systems Used to Acquire Data from Universal Testing Machines, https://www.astm.org/e1856-13r21.html.

ASTM. (1981). ASTM C948-81: Standard Test method for dry and wet bulk density, water absorption, and apparent porosity. ASTM International, 81(August 1981), 2. https://compass-astm.ez26.periodicos.capes.gov.br/EDIT/html_annot.cgi?C948+81(2016)

ASTM. (2008). ASTM C 295-08: Standard Guide for Petrographic Examination of Aggregates for Concrete 1. C 295 - 08, i, 1–9.

Badan Standardisasi Nasional. (2019). 2019, Persyaratan Beton Struktural untuk Bangunan Gedung. Sni 2847-2019, 8, 720.

Bautista Pereda, A. J. (2018). Diseño de pavimento rígido permeable para la evacuación de aguas pluviales según la norma ACI 522R-10.

Bentz, D. P., Sant, G., & Weiss, J. (2008). Early-age properties of cement-based materials. I: Influence of cement fineness. Journal of Materials in Civil Engineering, 20(7), 502–508.

Bhutta, M. A. R., Tsuruta, K., & Mirza, J. (2012). Evaluation of high-performance porous concrete properties. Construction and Building Materials, 31, 67–73. https://doi.org/10.1016/j.conbuildmat.2011.12.024

C 39/C 39M –01. (2022). Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens. Nanomaterials, 126(2), 13–15. http://dx.doi.org/10.1016/j.jclepro.2016.03.100

Cui, X., Zhang, J., Huang, D., Liu, Z., Hou, F., Cui, S., Zhang, L., & Wang, Z. (2017). Experimental Study on the Relationship between Permeability and Strength of Pervious Concrete. Journal of Materials in Civil Engineering, 29(11). https://doi.org/10.1061/(asce)mt.1943-5533.0002058

Harber, P. J. (2005). Applicability of No-Fines Concrete as a Road Pavement A dissertation submitted by. October, 1–153.

Knapen, E., Lanoye, R., Vermeir, G., Lauriks, W., & Van Gemert, D. (2003). Acoustic properties of sound absorbing, polymer-modified porous cement mortars. Proceedings of MSR VI, Aedificatio Publishers, 347–358.

Lian, C., Zhuge, Y., & Beecham, S. (2011). The relationship between porosity and strength for porous concrete. Construction and Building Materials, 25(11), 4294–4298. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2011.05.005

Muda, M. M., Legese, A. M., Urgessa, G., & Boja, T. (2023). Strength, Porosity and Permeability Properties of Porous Concrete Made from Recycled Concrete Aggregates. Construction Materials, 3(1), 81–92. https://doi.org/10.3390/constrmater3010006

Obla, K., Kim, H., & Lobo, C. L. (2007). Crushed returned concrete as aggregates for new concrete. National Ready Mixed Concrete Association Silver Spring, MD, USA.

Pareek, K., & Hong, Y. M. (2020). Prediction of Permeability and Compressive strength for Pervious Concrete. IOP Conference Series: Materials Science and Engineering, 812(1). https://doi.org/10.1088/1757-899X/812/1/012013

Park, S.-B., & Tia, M. (2004). An experimental study on the water-purification properties of porous concrete. Cement and Concrete Research, 34(2), 177–184.

Pool, V. (2007). National Ready Mixed Concrete Association (NRMCA). Revista Concrete In Focus.

Rustan, S. (2019). Studi Karakteristik Beton Berongga Menggunakan Limbah Plastik Polypropylene (PP) sebagai Agregat Kasar. Universitas Fajar.

S. Indonesia, B. N. (2016). Spesifikasi Beton Struktural. Sni 6880:2016, 1, 1–156.

Sanjaya, N., Saloma, Hanafiah, Juliantina, I., & Nurjannah, S. A. (2021). Compressive Strength, Permeability and Porosity Analysis of Pervious Concrete by Variation of Aggregate and Compacting Method. Journal of Physics: Conference Series, 1783(1). https://doi.org/10.1088/1742-6596/1783/1/012073

Sanjuán, M. A., & Argiz, C. (2012). The new European standard on common cements specifications EN 197-1: 2011. Materiales de Construcción, 62(307), 425–430.

SNI 15-7064-2004. (1999). Cement Portland composite. 32(5), 20–21.

Supit, S. W. M., & Pandei, R. W. (2019). Effects of metakaolin on compressive strength and permeability properties of pervious cement concrete. Jurnal Teknologi, 81(5), 33–39. https://doi.org/10.11113/jt.v81.13485

Tuan, N. K., Minh, P. Q., Giang, N. H., Dung, N. T., & Kawamoto, K. (2023). Porosity and Permeability of Pervious Concrete Using Construction and Demolition Waste in Vietnam. International Journal of GEOMATE, 24(101), 12–21. https://doi.org/10.21660/2023.101.3511

Van Gemert, D., Czarnecki, L., Maultzsch, M., Schorn, H., Beeldens, A., Łukowski, P., & Knapen, E. (2005). Cement concrete and concrete–polymer composites: Two merging worlds: A report from 11th ICPIC Congress in Berlin, 2004. Cement and Concrete Composites, 27(9–10), 926–933.

Wang, F., & Sun, C. (2023). Effect of pore structure on compressive strength and permeability of planting recycled concrete. Construction and Building Materials, 394, 132167. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2023.132167

Xu, G., Gao, J., & Lu, X. (2007). Water-purification properties of porous concrete. 37, 504–507.

Zhang, Y., Li, H., Abdelhady, A., Yang, J., & Wang, H. (2021). Effects of specimen shape and size on the permeability and mechanical properties of porous concrete. Construction and Building Materials, 266, 121074. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2020.121074

Published

2024-07-25

How to Cite

Andi Muhammad Rezky Putra Ardian, Adnan Adnan, & Abd. Muis Baharuddin. (2024). Porous Concrete As Road Infrastructure Using Coarse Aggregate Uniform Gradation. International Journal of Mechanical, Electrical and Civil Engineering, 1(3), 159–171. https://doi.org/10.61132/ijmecie.v1i3.36