Design and Thermal Analysis of Phase Change Materials for Heat Storage in Industrial Processes
DOI:
https://doi.org/10.61132/ijmicse.v1i1.68Keywords:
Phase change materials, Heat storage, Thermal management, Industrial processes, Energy efficiencyAbstract
This paper presents the design and thermal analysis of phase change materials (PCMs) for heat storage applications in industrial processes. Various PCMs are evaluated based on their thermal conductivity, latent heat capacity, and melting points to determine their suitability for high-temperature industrial environments. Simulation results indicate that specific PCMs can significantly enhance heat storage efficiency, leading to better energy utilization. The findings provide valuable insights for selecting optimal PCMs to improve thermal management in energy-intensive industries.
References
Abhat, A. (1983). "Low temperature latent heat thermal energy storage: heat storage materials." Solar Energy, 30(4), 313-332. DOI: 10.1016/0038-092X(83)90123-3.
Cheng, P., & Satyamurthy, P. (2019). "Design of phase change material-based thermal energy storage systems: A review." Renewable Energy, 131, 263-276. DOI: 10.1016/j.renene.2018.07.042.
Farid, M. M., et al. (2004). "A review on phase change energy storage: Materials and applications." Energy, 29(6), 1207-1225. DOI: 10.1016/j.energy.2004.01.002.
Gonzalez, M. A., et al. (2017). "Numerical analysis of phase change materials for thermal energy storage in industrial processes." Energy, 141, 1559-1568. DOI: 10.1016/j.energy.2017.11.088.
Huang, B., et al. (2016). "Thermal conductivity enhancement of phase change materials: A review." Solar Energy Materials and Solar Cells, 158, 29-41. DOI: 10.1016/j.solmat.2016.02.007.
Khan, A., et al. (2017). "A review on thermal energy storage using phase change materials." International Journal of Energy Research, 41(14), 1911-1926. DOI: 10.1002/er.3685.
Khan, M. N., & Ranjbar, M. (2016). "Thermal energy storage using phase change materials in building applications: A review." Journal of Building Performance, 7(2), 72-82. DOI: 10.21830/jbp.v7i2.67.
Kumar, R., & Kalidasa Murugavel, K. (2018). "Review on thermal performance of phase change materials for thermal energy storage." International Journal of Thermal Sciences, 126, 18-30. DOI: 10.1016/j.ijthermalsci.2017.11.019.
López, A., et al. (2018). "Thermal analysis and design of phase change materials in industrial applications." Applied Thermal Engineering, 135, 174-182. DOI: 10.1016/j.applthermaleng.2017.09.108.
Memon, A. R., & Liu, Q. (2017). "Recent advancements in phase change materials for thermal energy storage: A review." Materials Today: Proceedings, 4(2), 1444-1450. DOI: 10.1016/j.matpr.2017.02.073.
Sari, A. R., & Supriadi, M. (2020). "Thermal performance of phase change materials for energy storage: A review." Renewable and Sustainable Energy Reviews, 119, 109550. DOI: 10.1016/j.rser.2019.109550.
Sharma, A., et al. (2009). "Phase change materials for thermal energy storage." Energy, 34(3), 172-180. DOI: 10.1016/j.energy.2008.12.005.
Tao, Y., et al. (2014). "Thermal analysis of phase change materials for heat storage in solar applications." Renewable Energy, 69, 136-142. DOI: 10.1016/j.renene.2014.03.020.
Zalba, B., Marín, J. M., Cabeza, L. F., & Mehling, H. (2003). "Freezing and melting of phase change materials for thermal energy storage: A review." Applied Thermal Engineering, 23(3), 219-232. DOI: 10.1016/S1359-4311(02)00273-4.
Zhou, D., et al. (2015). "Thermal energy storage using phase change materials: A comprehensive review." Energy Conversion and Management, 95, 377-395. DOI: 10.1016/j.enconman.2015.02.015.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 International Journal of Mechanical, Industrial and Control Systems Engineering

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.